skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitehorn, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
  2. Abstract We forecast the number of galaxy clusters that can be detected via the thermal Sunyaev–Zel’dovich (tSZ) signals by future cosmic microwave background (CMB) experiments, primarily the wide area survey of the CMB-S4 experiment but also CMB-S4's smaller de-lensing survey and the proposed CMB-HD experiment. We predict that CMB-S4 will detect 75,000 clusters with its wide survey of f sky = 50% and 14,000 clusters with its deep survey of f sky = 3%. Of these, approximately 1350 clusters will be at z ≥ 2, a regime that is difficult to probe by optical or X-ray surveys. We assume CMB-HD will survey the same sky as the S4-Wide, and find that CMB-HD will detect three times more overall and an order of magnitude more z ≥ 2 clusters than CMB-S4. These results include galactic and extragalactic foregrounds along with atmospheric and instrumental noise. Using CMB-cluster lensing to calibrate the cluster tSZ–mass scaling relation, we combine cluster counts with primary CMB to obtain cosmological constraints for a two-parameter extension of the standard model (ΛCDM + ∑ m ν + w 0 ). In addition to constraining σ ( w 0 ) to ≲1%, we find that both surveys can enable a ∼2.5–4.5 σ detection of ∑ m ν , substantially strengthening CMB-only constraints. We also study the evolution of the intracluster medium by modeling the cluster virialization v( z ) and find tight constraints from CMB-S4, with further factors of three to four improvement for CMB-HD. 
    more » « less
  3. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
  4. Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties. 
    more » « less